9,611 research outputs found

    Incidence and Characteristics of Total Stroke in the United States

    Get PDF
    BACKGROUND AND PURPOSE: Stroke, increasingly referred to as a "brain attack", is one of the leading causes of death and the leading cause of adult disability in the United States. It has recently been estimated that there were three quarters of a million strokes in the United States in 1995. The aim of this study was to replicate the 1995 estimate and examine if there was an increase from 1995 to 1996 by using a large administrative claims database representative of all 1996 US inpatient discharges. METHODS: We used the Nationwide Inpatient Sample of the Healthcare Cost and Utilization Project, release 5, which contains ≈ 20 percent of all 1996 US inpatient discharges. We identified stroke patients by using the International Classification of Diseases, 9th Revision, Clinical Modification (ICD-9-CM) codes from 430 to 438, and we compared the 1996 database with that of 1995. RESULTS: There were 712,000 occurrences of stroke with hospitalization (95% CI 688,000 to 737,000) and an estimated 71,000 occurrences of stroke without hospitalization. This totaled 783,000 occurrences of stroke in 1996, compared to 750,000 in 1995. The overall rate for occurrence of total stroke (first-ever and recurrent) was 269 per 100,000 population (age- and sex-adjusted to 1996 US population). CONCLUSIONS: We estimate that there were 783,000 first-ever or recurrent strokes in the United States during 1996, compared to the figure of 750,000 in 1995. This study replicates and confirms the previous annual estimates of approximately three quarters of a million total strokes. This slight increase is likely due to the aging of the population and the population gain in the US from 1995 to 1996

    Ground control point distribution for accurate kilometre-scale topographic mapping using an rtk-gnss unmanned aerial vehicle and sfm photogrammetry

    Get PDF
    Copyright © 2020 by the authors. Unmanned Aerial Vehicles (UAVs) have revolutionised the availability of high resolution topographic data in many disciplines due to their relatively low-cost and ease of deployment. Consumer-grade Real Time Kinematic Global Navigation Satellite System (RTK-GNSS) equipped UAVs offer potential to reduce or eliminate ground control points (GCPs) from SfM photogrammetry surveys, removing time-consuming target deployment. Despite this, the removal of ground control can substantially reduce the georeferencing accuracy of SfM photogrammetry outputs. Here, a DJI Phantom 4 RTK UAV is deployed to survey a 2 × 0.5 km reach of the braided River Feshie, Scotland that has local channel-bar relief of c.1 m and median grain size c.60 mm. Five rectangular adjacent blocks were flown, with images collected at 20° from the nadir across a double grid, with strips flown in opposing directions to achieve locally convergent imagery geometry. Check point errors for seven scenarios with varying configurations of GCPs were tested. Results show that, contrary to some published Direct Georeferencing UAV investigations, GCPs are not essential for accurate kilometre-scale topographic modelling. Using no GCPs, 3300 independent spatially-distributed RTK-GNSS surveyed check points have mean z-axis error −0.010 m (RMSE = 0.066 m). Using 5 GCPs gave 0.016 m (RMSE = 0.072 m). Our check point results do not show vertical systematic errors, such as doming, using either 0 or 5 GCPs. However, acquiring spatially distributed independent check points to check for systematic errors is recommended. Our results imply that an RTK-GNSS UAV can produce acceptable errors with no ground control, alongside spatially distributed independent check points, demonstrating that the technique is versatile for rapid kilometre-scale topographic survey in a range of geomorphic environments.ES was funded by UK Natural Environment Research (NERC) Doctoral Training Grant NE/R007934/1, in partnership with the Scottish Environment Protection Agency (SEPA). GNSS equipment was provided by NERC Geophysical Equipment Facility (GEF) loan 1118

    Insight into the plasma structure of the Quad Confinement Thruster using electron kinetic modelling

    Get PDF
    The behaviour of plasma within the discharge channel of the Quad Confinement Thruster is studied on the basis of electron kinetics. Here we propose that E × B drift of electrons drives the formation of unusual quadrant dependent light emitting structures observed experimentally in the discharge channel of the Quad Confinement Thruster. This assertion is made on the basis of a theory-based analysis and a computational model of the Quad Confinement Thruster. A particle orbit model of electron motion under the influence of applied electric and magnetic fields was used to assess electron transport. Structures strongly resembling that of the observed visible emission regions were found in the electron density distribution within the channel. While the motion of electrons cannot be decoupled from the motion of ions, as in this simple electron kinetic approximation, the results of this analysis strongly indicate the physical mechanism governing the formation of the non-uniform density distributions within the Quad Confinement Thruster channel

    Mathematical Modelling of the Rayleigh Wave Reception by the System Whith Elastic Waveguide

    Get PDF
    Elastic waveguides are often applied in the acoustic nondestructive evaluation systems. Even though elastic waves in the waveguides are studied in the literature rather in detail, the very important problem of the incident wave interaction with the waveguide and its re-emission into the waveguide practically hasn’t been studied

    Water quality impacts and river system recovery following the 2014 Mount Polley mine tailings dam spill, British Columbia, Canada

    Get PDF
    The Mount Polley mine tailings embankment breach on August 4th 2014, in British Columbia, Canada, is the second largest mine waste spill on record. The mine operator responded swiftly by removing significant quantities of tailings from the primary receiving watercourse, stabilizing the river corridor and beginning construction of a new river channel. This presented a unique opportunity to study spatial patterns of element cycling in a partially-restored and alkaline river system. Overall, water quality impacts are considered low with Cu, and to a lesser extent V, being the only elements of concern. However, the spatial pattern of stream Cu loading suggested chemical (dominant at low flow) and physical (dominant at high flow) mobilization processes operating in different parts of the watershed. Chemical mobilization was hypothesized to be due to Cu sulfide (chalcopyrite) oxidation in riparian tailings and reductive dissolution of Cu-bearing Fe oxides in tailings and streambed sediments whereas physical mobilization was due to erosion and suspension of Cu-rich stream sediments further downstream. Although elevated aqueous Cu was evident in Hazeltine Creek, this is considered a relatively minor perturbation to a watershed with naturally elevated stream Cu concentrations. The alkaline nature of the tailings and the receiving watercourse ensures most aqueous Cu is rapidly complexed with dissolved organic matter or precipitates as secondary mineral phases. Our data highlights how swift removal of spilled tailings and river corridor stabilization can limit chemical impacts in affected watersheds but also how chemical mobilization (of Cu) can still occur when the spilled tailings and the receiving environment are alkaline. We present a conceptual model of Cu cycling in the Hazeltine Creek watershed
    • …
    corecore